Distribuzioni di Bernoulli e di Poisson

SIA DATO UN EVENTO CASUALE CHE PUÒ AVERE SOLO DUE POSSIBILI ESITI (AD ES. TOTO O CRESC, FIGURA RETTANGOLARE O FIGURA TRAPEZOIDALE...). UNO DI DUE RAPPRESENTA UN SUCCESO, L'ALTRO UN INSUCCESO. SIA p LA PROBABILITÀ DI SUCCESO. SI RIFERISCE A PROVA IN CONDIZIONI IDENTICHE E INDEPENDENTI TRA DI LORO. SI DICE VARIABILE CASUALE DI BERNOLLI, O BINOMIALE, QUELLA CHE CONTABILE IL NUMERO INSUCCESSE K DI SUCCESSE OBIETTIVI SVOLTE IN m PROVE.

SI POSSA DIMOSTRARE CHE LA DISTRIBUZIONE DI BERNOLLI, O BINOMIALE, È DATA DA:

$$ P(X = k) = \binom{m}{k} p^k (1-p)^{m-k} \quad k = 0, 1, \ldots, m $$

SI SINTETIZZA LA SINTESI CON $B(m, p)$. INOLTRE SI PUO' DIMOSTRARE CHE:

$$ E(X) = np \quad V(X) = np(1-p) $$

SIA AD EJEMPLO UN'URNA CONTENENTE 10 PALUME, DI CUI 4 BIANCHE E 6 NERE. SI EFFETTUANO 5 ESTRASIONI SUCCESSIVE DI UNA PALUMA. QUANTÀ E LA PROBABILITÀ DI ESTRARRE EXATTAMENTE 2 PALUME BIANCHE?

IN QUESTO CASO, $m = 5$ (NUMERO DI PROVE). GLI ESITI SONO SOLO DUE: ESTRASIONE DI PALUMA BIANCA O NERA E IL SUCCESO E' RAPPRESENTATO DA UNA PALUMA NERA. LA PROBABILITÀ DI ESTRARRE UNA PALUMA NERA E' $\frac{6}{10} = \frac{3}{5}$ E 10 NON SI SORRISCE $K = 2$. SI NUSA E' UNA:

$$ P(X = 2) = \binom{5}{2} \left(\frac{3}{5}\right)^2 \left(\frac{2}{5}\right)^3 = \frac{5 	imes 2}{10} \times \frac{27}{125} = 0.288 \approx 0.29 $$

CHE IL 23% - SI BA POI:

$$ E(X) = 5 \times \frac{3}{5} = 3 \quad V(X) = 5 \times \frac{3}{5} \times \frac{2}{5} = 6 \times \frac{2}{5} $$

UN'ALTRA IMPORTANTE DISTRIBUZIONE DISCRETA DI PROBABILITÀ E' LA DISTRIBUZIONE DI POISSON, CHE SI PUO' RIVISITARE COME UNA APPROSSIMAZIONE DI QUELLA BINOMIALE. Una VARIABILE CASUALE E' SECCA DI POISSON CON PARAMETRO λ SE LA SUA DISTRIBUZIONE DI PROBABILITÀ E' DATA DA:

$$ P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \quad k = 0, 1, \ldots $$

SI SINTETIZZA LA SINTESI CON $P(\lambda)$. ESISTE APPROSSIMAZIONE TANDE MESSO IL CONPORTAMENTO DI QUESTA VARIABILE CASUALE QUANDO PIU' È GRANDE E λ E' PICCOLO. SI SINTETIZZA LA SINTESI QUANDO LA VARIABILE CASUALE DI POISSON SI CONSIDERA IL VALORE MEDIO NA NON I VALORI ESTREMI DI m E p PERCHE:

$$ E(X) = \lambda \quad V(X) = \lambda $$

ESISTE E' IMPORTANZISSIMA IN FISICA, POICHÉ IL NUMERO DI PARTICELLE CHE E' EMESSA DA UNA RADIOACTIVE IN UN TEMPO FISSO E' UNA VARIABILE CASUALE DEL TIPO DI POISSON. AD ESEMPIO, IL CENTRAVOLTA ARRIVANO IN MEDIA 100 EVENTI. QUANTÀ E LA PROBABILITÀ DI VEDERNE ARRIVARE 120? X E' IL NUMERO DI EVENTI INDIPENDENTI TRA DI LORO, E NON SO LA PROBABILITÀ STA CHE AVVACCHIO TELEFONI.

ALLORA:

$$ P(X = 120) = e^{-100} \frac{100^{120}}{120!} \approx 0.56 \% $$
ESEMPIO - Sia data la variabile casuale \(X \) avente densità di probabilità:

\[
f(x) = \begin{cases} \frac{A}{4} & 0 \leq x \leq 4 \\ 0 & \text{altrimenti} \end{cases}
\]

Essa è definita positiva e per rappresentare una densità di probabilità deve essere:

\[
\int_{-\infty}^{+\infty} f(x) \, dx = \int_{0}^{4} A \, x^2 \, dx = 1
\]

L'integrale si riduce alla forma di espressione di una densità di probabilità e vale:

\[
\int_{0}^{4} A \, x^2 \, dx = \frac{A}{6} x^3 \bigg|_{0}^{4} = \frac{32}{6} A = 2 A
\]

Si deduce che:

\[
M = E(X) = \int_{0}^{4} x \cdot \frac{3}{6} x^2 \, dx = \frac{3}{6} \int_{0}^{4} x^3 \, dx = 3
\]

\[
V(X) = \int_{0}^{4} x^2 \cdot \frac{3}{6} x^2 \, dx - M^2 = \frac{3}{6} \int_{0}^{4} x^4 \, dx - 9 = \frac{3}{5}
\]

Inoltre la funzione di ripartizione per \(x < 0 \) è nulla, per \(0 < x < 4 \) vale:

\[
\int_{0}^{4} \frac{3}{64} t^2 \, dt = \frac{3}{64} \int_{0}^{4} t^2 \, dt = \frac{3}{64} \cdot \frac{4}{3} = \frac{1}{4}
\]

Mentre per \(x > 4 \) assume il valore fisso:\n
\[
\int_{4}^{+\infty} \frac{3}{64} t^2 \, dt = 1
\]

A questo punto si scrive:

\[
F(x) = \begin{cases} 0 & \text{se} \quad x < 0 \\ \frac{3}{64} x^2 & \text{se} \quad 0 \leq x < 4 \\ 1 & \text{se} \quad x > 4
\end{cases}
\]

Una variabile casuale continua ha una distribuzione uniforme sul l'intervallo \([a; b]\) se la sua densità di probabilità è data da:

\[
f(x) = \begin{cases} \frac{1}{b-a} & \text{se} \quad a \leq x \leq b \\ 0 & \text{altrimenti} \end{cases}
\]

Si noti dimostrare che:

\[
E(X) = \frac{a+b}{2} \quad V(X) = \frac{(b-a)^2}{12}
\]

ESEMPIO - Una linea di autobus prevede la prima corsa alle 7.15 e poi una ogni 15 minuti. Io ogni giorno mi reto alla stazione in un orario conforme tra le 7.00 e le 7.30 e previsto il primo bus che passa. Qual è la probabilità che debba attendere più di 5 minuti? In pratica il pullman arriva in un orario a caso che si può assimilare alla scelta di un numero a caso nell'intervallo \([0, 30]\), scelta indicata con la variabile casuale \(X \) con distribuzione uniforme. Devo attendere più di 5 minuti se arrivo tra le 7.00 e le 7.10 o tra le 7.15 e le 7.25, quindi la probabilità corretta è:

\[
P(E) = P(0 < X < 10) + P(15 < X < 25) = \int_{0}^{10} \frac{4}{30} \, dx + \int_{15}^{25} \frac{4}{30} \, dx = \frac{1}{30} (10 - 0) + \frac{4}{30} (25 - 15) = \frac{1}{3} + \frac{4}{3} = \frac{5}{3} = 67\%
\]