Dicesi superconduttività il fenomeno che si manifesta in molti materiali conduttori, che mostrano una repentina diminuzione della resistività per temperature inferiori a un determinato valore T_c, detto temperatura critica, e forti proprietà diamagnetiche, che manifestano subendo una intensa repulsione da parte del campo magnetico. Prima del 1986, la più alta temperatura critica osservata era 23,2 K (-249,95 °C), caratteristica dei composti niobio-germanio. Condizioni termiche così estreme potevano essere mantenute solo impiegando elio liquido, un refrigerante estremamente costoso e di modesta efficienza. Per ragioni economiche, era dunque improponibile lo sfruttamento industriale di macchine e dispositivi a superconduttore su vasta scala.

Nel 1986, studi compiuti presso diversi centri di ricerca mutarono radicalmente il corso della situazione. Si scopri infatti che composti ceramici a base di ossidi metallici manifestano la transizione allo stato superconduttivo a temperature sufficientemente alte da permettere l’uso di azoto liquido come refrigerante. Fu questa la scoperta della cosiddetta "superconduttività ad alta temperatura": poiché l’azoto liquido costa circa un decimo dell’elio liquido e liquefa a 77 K (-196 °C), raffreddando con un efficienza circa 20 volte superiore a quella dell’elio liquido, si aprirono le porte a numerose applicazioni della superconduttività, che improvvisamente apparvero realisticamente realizzabili.

La superconduttività fu scoperta nel 1911 dal fisico olandese Heike Kamerlingh Onnes, il quale osservò la scomparsa della resistenza elettrica nel mercurio a temperature inferiori ai 4,2 K (-269 °C). Nel 1933 i fisici Karl W. Meissner e R. Ochsenfeld riscontrarono un forte diamagnetismo in un superconduttore, compiendo un importante passo verso la comprensione del fenomeno. La spiegazione teorica della superconduttività si ebbe nel 1957, quando i fisici statunitensi John Bardeen, Leon N. Cooper e John R. Schrieffer avanzarono la celebre teoria BCS, per la quale vennero insigniti del premio Nobel per la fisica nel 1972, specificando la natura quantistica del fenomeno. La transizione allo stato superconduttivo è da ricondurre alla formazione di coppie di elettroni (coppie di Cooper) che, in quantità di bosoni, si muovono liberamente nel volume del conduttore. Nel 1962 il fisico britannico Brian Josephson, sulla base dell’interpretazione quantistica della superconduttività, ipotizzò l’esistenza di oscillazioni della corrente elettrica che scorre tra due superconduttori, separati da un sottile strato isolante, e posti in un campo magnetico o elettrico. L’effetto, noto come effetto Josephson, fu successivamente confermato sperimentalmente.

Poiché un superconduttore non offre alcuna resistenza al passaggio di cariche elettriche, una corrente indotta al suo interno continua a circolare per un tempo indefinito, senza apprezzabili diminuzioni di intensità e senza dissipazione di energia sotto forma di calore. Per questa ragione, i superconduttori sono impiegati per costruire elettromagneti capaci di generare campi magnetici estremamente intensi con una spesa energetica ridotta.

Magneti realizzati con materiale superconduttore sono stati usati, e lo saranno sempre di più in futuro, nella costruzione di potenti acceleratori di particelle. Inoltre, sfruttando gli effetti quantistici della superconduttività, sono stati realizzati strumenti di misura della corrente elettrica, della tensione e del campo magnetico caratterizzati da precisione e sensibilità mai raggiunte prima. La scoperta di migliori materiali supercondutttivi porterà ad un più ampio spettro di applicazioni, tra cui calcolatori più veloci e con maggior capacità di memoria, reattori a fusione nucleare, nei quali si potranno utilizzare campi magnetici intensissimi per confinare il gas ionizzato, la realizzazione della sospensione magnetica per ottenere treni ad alta velocità e lo sviluppo di un più efficiente sistema di produzione e trasporto dell’energia elettrica, applicazione forse più importante di tutte dal punto di vista economico.

Nel 1987 il premio Nobel per la fisica è stato assegnato al fisico tedesco J. Georg Bednorz e al fisico svizzero K. Alex Mueller per il loro lavoro sulla superconduttività ad alta temperatura.